主页 > 随笔散文 > 正文

为什么植物会有光合作用(为何植物需要光合)

2023-10-26 18:21:56 来源:时胜文学 点击:4
植物为什么可以进行光合作用?

植物通过光合作用,利用光将吸收的CO2和水同化为有机物并释放出O2。它所合成的有机物用来维持植物本身生长发育的需要(同时也为整个生物界提供食物来源。光合作用释放的O2使人类及一切需要O2的生物能够生存)。是植物的生存、生活、与生长的基础。

反应阶段

编辑

光反应

光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于

线粒体呼吸电子传递链那样的电子传递系统传递给

,使它还原为

。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动

磷酸化生成

反应式:

暗反应

暗反应阶段是利用光反应生成

进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于

的提供,故称为暗反应阶段。[3]

反应式:

总反应式:

其中

表示糖类。

光反应与暗反应的区别

项目

光反应

碳反应(暗反应)

实质

光能→化学能,释放O2

同化CO2形成(CH2O)(酶促反应)

时间

短促,以微秒计

较缓慢

条件

需色素、光、ADP、和酶

不需色素和光,需多种酶

场所

在叶绿体内囊状结构薄膜上进行

在叶绿体基质中进行

物质转化

2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下)ADP+Pi→ATP(在酶的催化下)

CO2+C5→2C3(在酶的催化下)

C3+[H]→(CH2O)+C5(在ATP供能和酶的催化下)

能量转化

叶绿素把光能先转化为电能再转化为活跃的化学能并储存在ATP中

ATP中活跃的化学能转化变为糖类等有机物中稳定的化学能

详细划分

编辑

光合作用过程Ⅰ:光吸收

原初反应

当特殊叶绿素a对(P)被光激发后成为激发态P*,放出电子给原初电子受体(A)。叶绿素a被氧化成带正电荷(P+)的氧化态,而受体被还原成带负电荷的还原态(A-)。氧化态的叶绿素(P+)在失去电子后又可从原初电子供体(D)得到电子而恢复电子的还原态。这样不断地氧化还原,原初电子受体将高能电子释放进入电子传递链,直至最终电子受体NADP+。同样,氧化态的电子供体(D+)也要想前面的供体夺取电子,一次直到最终的电子供体水。

光合作用过程Ⅱ:电子传递和光合磷酸化

1. 光合电子传递

1)集光复合体

由大约200个叶绿素分子和一些肽链构成。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。

2)光系统Ⅰ(PSI)

能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区的基质类囊体膜中。由集光复合体Ⅰ和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。

3)光系统Ⅱ(PSⅡ)

吸收高峰为波长680nm处,又称P680。至少包括12条多肽链。位于基粒与基质非接触区域的类囊体膜上。包括一个集光复合体(LHC Ⅱ)、一个反应中心和一个含锰原子的放氧的复合体。D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素及质体醌。

4)细胞色素b6/f复合体

可能以二聚体形式存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。

5)非循环电子传递链

非循环电子传递链过程大致如下:

电子从光系统Ⅱ出发。

光系统Ⅱ→初级接受者→质体醌(Pq)→细胞色素复合体→质体蓝素(含铜蛋白质,Pc)→光系统Ⅰ→初级接受者→铁氧化还原蛋白(Fd)→NADP还原酶

非循环电子传递链从光系统Ⅱ出发,会裂解水,释出氧气,生产ATP与NADPH。

6)循环电子传递链

循环电子传递链的过程如下:

电子从光系统Ⅰ出发。

光系统Ⅰ→初级接受者→铁氧化还原蛋白(Fd)→细胞色素复合体→质粒蓝素(含铜蛋白质)(Pc)→光系统Ⅰ

循环电子传递链不会产生氧气,因为电子来源并非裂解水。最后会生产出ATP。

非循环电子传递链中,细胞色素复合体会将氢离子打到类囊体里面。高浓度的氢离子会顺着高浓度往低浓度的地方流这个趋势,像类囊体外扩散。但是类囊体膜是双层磷脂膜,对于氢离子移动的阻隔很大,它只能通过一种叫做ATP合成酶的通道往外走。途中正似水坝里的水一般,释放它的位能。经过ATP合成酶时会提供能量、改变它的形状,使得ATP合成酶将ADP和磷酸合成ATP。

NADPH的合成没有如此戏剧化,就是把送来的电子与原本存在于基质内的氢离子与NADP合成而已。值得注意的是,光合作用中消耗的ATP比NADPH要多得多,因此当ATP不足时,相对来说会造成NADPH的累积,会刺激循环式电子流之进行。

2.光合磷酸化

P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;

光合作用电子传递链Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。2H2O→O2+2(2H)+4e

在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统Ⅱ复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin,PC)中的Cu,再将电子传递到光系统Ⅱ。

P700被光能激发后释放出来的高能电子沿着A0→A1→4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(FD)。最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP,形成NADPH。失去电子的P700从PC处获取电子而还原。

以上电子呈Z形传递的过程称为非循环式光合磷酸化,当植物在缺乏NADP时,电子在光系统Ⅰ内流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化。

一对电子从P680经P700传至NADP,在类囊体腔中增加4个H,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H又被用于还原

NADP,所以类囊体腔内有较高的H(pH≈5,基质pH≈8),形成质子动力势,H经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP。

ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。CF1同样由5种亚基组成α3β3γδε的结构。CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。

光合作用过程Ⅲ:碳同化

1.卡尔文循环

1)羧化阶段

CO2必须经过羧化阶段,固定成羧酸,然后被还原。核酮糖-1,5-二磷酸(RuBP)是CO2的接受体,在核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)作用下,和CO2形成中间产物,后者再与1分子H2O反应,形成2分子的甘油酸-3-磷酸(PGA),这就是CO2羧化阶段。

2)还原阶段

甘油酸-3-磷酸被ATP磷酸化,在甘油酸-3-磷酸激酶催化下,形成甘油酸-1,3-二磷酸(DPGA),然后在甘油醛-3-磷酸脱氢酶作用下被NADPH+H还原,形成甘油醛-3磷酸(PGAld)。

3)更新阶段

更新阶段是PGAld进过一系列的转变,再形成RuBP的过程,也就是RuBP的再生阶段。

2. C4途径

1)羧化

C4途径的CO2受体是叶肉细胞质中的PEP,在烯醇丙酮磷酸羧激酶(PEPC)催化下,固定HCO3-(CO2溶解于水),生成草酰乙酸(OAA)。草酰乙酸是含四个碳原子的二羧酸,所以这个反应称为C4-二羧酸途径

2)转变

叶肉细胞的叶绿体中的草酰乙酸经过NADP-苹果酸脱氢酶作用,被还原为苹果酸。但是也有一些品种,细胞质中的草酰乙酸与谷氨酸在天冬氨酸转氨酶作用下,形成天冬氨酸和酮戊二酸。

上述苹果酸和天冬氨酸等C4酸形成后,就转移到维管束鞘细胞中。

3)脱羧与还原

四碳双羧酸在维管束鞘中脱羧后变成丙酮酸或丙氨酸。释放的CO2通过卡尔文循环被还原为糖类。

4)再生

C4酸脱羧形成的C3酸(丙酮酸或丙氨酸)在运回叶肉细胞,在叶绿体中,经丙酮酸磷酸双激酶(PPDK)催化和ATP作用,生成CO2受体PEP,是反应循环进行。

3、景天科酸代谢途径(CAM)

景天科植物如景天、落地生根等叶子具有特殊的CO2固定方式。夜晚气孔开放,吸进CO2,在PEP羧基酶作用下,与PEP结合,形成OAA,进一步还原为苹果酸,积累于液泡中。白天气孔关闭,液泡中的苹果酸便运到胞质溶胶,在NADP-苹果酸酶作用下,氧化脱羧,放出CO2,参与卡尔文循环,形成淀粉等。此外,丙糖磷酸通过糖酵解过程,形成PEP,再进一步循环。所以植物体在夜晚的有机酸含量十分高,而糖类含量下降;白天则相反,有机酸下降,而糖分增多。这种幼根机酸合成日变化的代谢类型,而最早发现于景天科植物,所以称为景天酸代谢。[4]

光合色素

1.光色素种类 

叶绿体是光合作用的场所类囊体中含两类色素:叶绿素和橙黄色的类胡萝卜素(胡萝卜素和叶黄素),通常叶绿素和类胡萝卜素的比例约为3:1,chla与chlb也约为3:1,在许多藻类中除叶绿素a、b外,还有叶绿素c、d和藻胆素,如藻红素和藻蓝素;在光合细菌中是细菌叶绿素等。叶绿素a、b和细菌叶绿素都由一个与镁络合的卟啉环和一个长链醇组成,它们之间仅有很小的差别。类胡萝卜素是由异戊烯单元组成的四萜,藻胆素是一类色素

蛋白,其生色团是由吡咯环组成的链,不含金属,而类色素都具有较多的共轭双键。全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。类胡萝卜素与叶黄素能对叶绿素a、b起一定的保护作用。几类色素的吸收光谱不同,叶绿素a、b吸收红,橙,蓝,紫光,类胡萝卜素吸收蓝紫光,吸收率最低的为绿光。特别是藻红素和藻蓝素的吸收光谱与叶绿素的相差很大,这对于在海洋里生活的藻类适应不同的光质条件,有生态意义。

2.吸收峰

叶绿素a、b的吸收峰过程:叶绿体膜上的两套光合作用系统:光合作用系统Ⅰ和光合作用系统Ⅱ,(光合作用系统一比光合作用系统二要原始,但电子传递先在光合系统二开始)在光照的情况下,分别吸收680nm和700nm波长的光子(以蓝紫光为主,伴有少量红色光),作为能量,将从水分子光解过程中得到电子不断传递,(能传递电子得仅有少数特殊状态下的叶绿素a)最后传递给辅酶二NADP。

叶绿素a,b的吸收峰

而水光解所得的氢离子则因为顺浓度差通过类囊体膜上的蛋白质复合体从类囊体内向外移动到基质,势能降低,其间的势能用于合成ATP,以供暗反应所用。而此时势能已降低的氢离子则被氢载体NADP+带走。一分子NADP可携带两个氢离子,NADP+2e+H=NADPH。还原性辅酶二NADPH则在暗反应里面充当还原剂的作用。

为什么植物会进行光合作用

上过生物课的朋友们一定都知道,植物遇见阳光就会进行一种光合作用,光合作用将空气中的二氧化碳吸入,然后排除氧气和水。万物生长都需要太阳,没有光就没有生物。那么为啥呢么植物会进行光合作用呢?相信许多朋友们都还不太了解,下面我就来给大家详细介绍一下吧。

光是一切生物体能量的最终来源。“万物生长靠太阳”,没有光就没有万物。

在生物进化过程中,只有植物才能进行光合作用,它是生物进化的'产物,是生态系统的主要成分,它实现从无机到有机的转化,实现了把光能转化成化学能,最后转化在有机物中贮存起来,这一切都与它进化的结构密切相关。

它是叶肉细胞中的叶绿体上含有时行光合作用的色素。这些色素能对光能进行转化。没有光这些色素就失去了它意义。所以植物有光就会进行光合作用与其结构相关。

植物的光合作用原理

光合作用的原理

光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。.其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。.

光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。

其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。

为什么植物会光合作用啊?

植物没有象人胃那样的器官.大多数的植物都是自养需养-自立更生.需要氧气.所以植物要在太阳光的作用下进行光合作用.太阳光照在植物的叶片上.叶片上的叶绿体内有与光合作用有关的色素.而经过一系列的化学变化转化成为有机物供植物生存.哈哈

那人为什么会吃饭

消化

植物也要吸收营养来满足生长发育的要求啊

自然进化的结果

形成和谐的生态循环系统

嘎嘎

植物有叶绿体,叶绿因为植物体内有光合色素,并且有各种与光合作用有关的酶,具备光合作用的条件。

体中有叶绿素。有叶绿体植物就能进行光合作用。

为了满足自身对氧的需要和保存有机物,使植物本身更健壮

植物为何有光合作用?

对于生物界的几乎所有生物来说,光合作用过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。

光合作用(Photosynthesis)是植物、藻类利用叶绿素和某些细菌利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化

为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右

植物为什么要光合作用?

绿色植物要生存,要繁衍,就必须进行新陈代谢,而要进行新陈代谢就必须利用能量,这个能量就是从自然界中最常见的、最普遍的太阳光中获得的。植物正是利用阳光提供的能量,来完成自然界中最伟大的合成作用——光合作用。

事实上,由于经过长期对生存环境的适应和进化,不同的植物对光的要求也不同。有很多植物只有在较强的光照下才能健壮生长,在阴暗的地方则会发育不良、生长缓慢,这类植物人们叫做阳生植物。我们所见到的许多高大乔木都是阳生植物,例如松、杉、杨、柳、桦、槐等。它们为了获得充足的阳光照射,都努力向空中伸展身姿,接受阳光的洗礼。此外,一般的农作物也都是阳生植物,例如我国北方农民普遍种植的小麦、玉米、棉花等等。阳生植物大多生长在空旷的地方,它们的枝叶一般较疏松,透光性比较好;植株的开花结实率也比较高,生长快。还有,阳生植物的叶片质地较厚,叶面往往有角质层或蜡质层用来反射光线,以避免特强光线的损伤。它们的气孔通常小而密集,叶绿体个头小,但是数量很多。尤其有趣的是,阳生植物叶部的叶绿体在细胞中的位置是可以改变的!当光照过于强烈时,叶绿体就会排列在光线射来的平行方向,以减少强光的伤害;当光照较弱时,叶绿体的排列又可以与光线射来的方向成直角,以增强照射在叶绿体上的光照强度,进行有效的光合作用。你看,小小的绿色的叶子也有着自己生存的智慧唰

还有一些植物则喜欢生长在光线较弱的地方,它们在弱光下反而比在强光下生长发育得更好,对应于阳生植物,这样的植物就被人们叫做阴生植物。森林中高大树木下生长的许多草本植物、蕨类植物、药用植物以及山毛榉、红豆杉等等,都是胡生植物。当然,称它们为阴生植物,并不是说这类植物对光照的要求越弱越好,它们对弱光的要求也是有一个最低限度的。如果光照低于这个限度,这类植物也不会进行正常的生长和发育,所以阴生植物要求较弱的光照强度也仅仅是相对阳生植物而言的。阴生植物的叶片大都比较平展,叶的上部接收的阳光比较多,叶子上面的颜色较深。阴生植物的叶镶嵌现象特别明显,叶柄有长有短,叶形有大有小,每一片叶子都能充分利用空间,以便更充分地利用阳光。对于这些植物而言,如果光照过强,就会出现植株生长缓慢、叶片变黄、严重时叶子甚至会出现“灼斑”,影响这类植物的生存。因此,在引种这类阴生植物时,如果环境光照较强,就必须采取遮蔽措施来减少植物受到的光照,保护植物顺利生长。

光照对植物的开花也有很重要的影响。科学家们认为,日照强度对植物的开花有决定性的影响。有些植物开花需要较长时间的日照,这样的植物叫做长日照植物,例如作物中的冬小麦、大麦、菠菜、油菜、甜菜、萝卜等;有些植物需要较短的日照长度才会开花,这样的植物类型叫做短日照植物,常见的这类植物有苍耳、牵牛、水稻、大豆、玉米、烟草等。

利用光对植物开花作用的机理,园艺师们就可以通过人为的延长或缩短日照时间,促使植物在我们需要的时间开花。举一个简单的小例子:大家经常见到的植物菊花是一种典型的短日照植物,一般都是在秋季才开花的。现在,人们经过人工处理(遮光成短日照),在六七月份也可以让菊花开出鲜艳的花朵来!如果人为的延长光照,还可以使花期延后,让我们在寒冷的春节欣赏到刚刚盛开的美丽的菊花呢。

农作物减产的原因是什么及措施?

我们知道,水稻、甘蔗、麦类、大豆、南瓜、胡萝卜、烟草等作物,在同一块地上连年种植,是不会出现生长发育不良和减产的。但是,番茄、茄子、西瓜、豌豆、蚕豆、花生、木薯以及无花果等作物,在同一块地上连作,就往往会生长不良,或者发生病害而减产。

同一种作物在同一块地上连作造成减产的原因是多种多样的,目前已知的有下列几个原因:

连作会使土壤中养分缺乏。土壤中的氮、磷、钾、钙、镁等各种养分和微量元素的含量是有限的,而同一种作物对土壤各种养分的需求是比较固定的,因此在同一块地上连作同一种作物,就必然会使这种作物所必需的养分逐渐在土壤中减少,以至消失,造成这种作物的生长发育不良。例如,芋头在同一块地上连作,土壤中的石灰质含量就会减少一半,从而使芋头减产。

积累在土壤中的前作根系分泌物,影响后作生长。一般作物在生长过程中,除由根系的呼吸作用放出二氧化碳外,还分泌出各种如酒石酸、肉桂酸、柠檬酸等有机酸和各种酶类。前作留在土壤中的这些物质,对第二作的根系有毒害作用,从而使作物生长发育不良而减产。

前作遗留物的影响。有人做过这样的试验,将同一种作物的根、茎、叶、花的浸出液,分别浇灌同一种作物的幼苗,结果对幼苗是有影响的。因此前作遗留在土壤中的根、茎、叶、花等的残体,也和根系分泌物一样,会影响第二作的生长发育。这一情况,在桃树和豌豆的连作中比较明显。

病毒和微生物的影响。前作患病收获后,一些致病的病原菌会留存在土壤里,第二作幼苗就会得病,如番茄、茄子、豌豆和花生的青枯病等。其中花生青枯病最为显著,同一块地上连作花生,必然出现青枯病,严重的会全部死亡。

上述原因有的是单个起减产作用,有的是多个综合作用。因此,这些作物在减产时首先要弄清楚原因,然后采取相应的措施。

目前解决连作减产的措施,最有效的办法是:改连作为轮作;增施肥料;喷施药剂,以毒杀土壤中残留的病原菌;果林则采用换土或给土壤消毒。

西安中际医院治疗癫痫病吗,能不能看好

西安那个医院专治小儿癫痫病

西安那家癫痫病医院好些

西安那家医院看癫痫病看的好

西安那家医院看癫痫病最好